3.10.90 \(\int \frac {x^4}{(a+b x^2+c x^4)^{3/2}} \, dx\) [990]

Optimal. Leaf size=342 \[ \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {b x \sqrt {a+b x^2+c x^4}}{\sqrt {c} \left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {\sqrt [4]{a} b \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{c^{3/4} \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \left (b-2 \sqrt {a} \sqrt {c}\right ) c^{3/4} \sqrt {a+b x^2+c x^4}} \]

[Out]

x*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)-b*x*(c*x^4+b*x^2+a)^(1/2)/(-4*a*c+b^2)/c^(1/2)/(a^(1/2)+x^2*c
^(1/2))+a^(1/4)*b*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*
arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^
2*c^(1/2))^2)^(1/2)/c^(3/4)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)-1/2*a^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2
)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^
(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(b-2*a^(1/2)*c^(1/2))/(c*
x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 342, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1134, 1211, 1117, 1209} \begin {gather*} \frac {\sqrt [4]{a} b \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{c^{3/4} \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 c^{3/4} \left (b-2 \sqrt {a} \sqrt {c}\right ) \sqrt {a+b x^2+c x^4}}-\frac {b x \sqrt {a+b x^2+c x^4}}{\sqrt {c} \left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^4/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(x*(2*a + b*x^2))/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (b*x*Sqrt[a + b*x^2 + c*x^4])/(Sqrt[c]*(b^2 - 4*a*
c)*(Sqrt[a] + Sqrt[c]*x^2)) + (a^(1/4)*b*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x
^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(c^(3/4)*(b^2 - 4*a*c)*Sqrt[a +
b*x^2 + c*x^4]) - (a^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*Ellipti
cF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2*(b - 2*Sqrt[a]*Sqrt[c])*c^(3/4)*Sqrt[a + b*
x^2 + c*x^4])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1134

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-d^3)*(d*x)^(m - 3)*(2*a
+ b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*(p + 1)*(b^2 - 4*a*c))), x] + Dist[d^4/(2*(p + 1)*(b^2 - 4*a*c)), Int
[(d*x)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx &=\frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}+\frac {\int \frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}} \, dx}{-b^2+4 a c}\\ &=\frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt {a} \int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx}{\left (b-2 \sqrt {a} \sqrt {c}\right ) \sqrt {c}}+\frac {\left (\sqrt {a} b\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx}{\sqrt {c} \left (b^2-4 a c\right )}\\ &=\frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {b x \sqrt {a+b x^2+c x^4}}{\sqrt {c} \left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {\sqrt [4]{a} b \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{c^{3/4} \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \left (b-2 \sqrt {a} \sqrt {c}\right ) c^{3/4} \sqrt {a+b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.54, size = 452, normalized size = 1.32 \begin {gather*} \frac {4 c \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x \left (2 a+b x^2\right )-i b \left (-b+\sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )+i \left (-b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{4 c \left (b^2-4 a c\right ) \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \sqrt {a+b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^4/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(4*c*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x*(2*a + b*x^2) - I*b*(-b + Sqrt[b^2 - 4*a*c])*Sqrt[(b + Sqrt[b^2 - 4*a*c
] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Elli
pticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] +
 I*(-b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(
2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2
 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/(4*c*(b^2 - 4*a*c)*Sqrt[c/(b + Sqrt[b^2 - 4*
a*c])]*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 450, normalized size = 1.32

method result size
default \(-\frac {2 c \left (\frac {b \,x^{3}}{2 c \left (4 a c -b^{2}\right )}+\frac {a x}{c \left (4 a c -b^{2}\right )}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\EllipticE \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(450\)
elliptic \(-\frac {2 c \left (\frac {b \,x^{3}}{2 c \left (4 a c -b^{2}\right )}+\frac {a x}{c \left (4 a c -b^{2}\right )}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\EllipticE \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(450\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(c*x^4+b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2*c*(1/2*b/c/(4*a*c-b^2)*x^3+a/c/(4*a*c-b^2)*x)/((x^4+b/c*x^2+a/c)*c)^(1/2)+1/2*a/(4*a*c-b^2)*2^(1/2)/((-b+(-
4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/
(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1
/2))/a/c)^(1/2))-1/2*b/(4*a*c-b^2)*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*
x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/
2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2
^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^4/(c*x^4 + b*x^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{4}}{\left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(c*x**4+b*x**2+a)**(3/2),x)

[Out]

Integral(x**4/(a + b*x**2 + c*x**4)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate(x^4/(c*x^4 + b*x^2 + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^4}{{\left (c\,x^4+b\,x^2+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(a + b*x^2 + c*x^4)^(3/2),x)

[Out]

int(x^4/(a + b*x^2 + c*x^4)^(3/2), x)

________________________________________________________________________________________